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Abstract. The charge and transition form factors of pions (Fπ, Fπγ , and Fπγ∗) are studied in the light-front
quark model (LFQM). We find that our results for Fπ and Fπγ agree well with experiment. Furthermore,
the mixing of η and η′ is considered. We also calculate Fηγ and Fη′γ and compare them with the data.

1 Introduction

Form factors are important physical quantities in under-
standing the internal structure of hadrons. In this paper,
we study two types of form factors: charge and transition
form factors for some light mesons. The former is relevant
in elastic electron meson scattering in which one off-shell
photon exchanges between the electron and one of the
quarks in the meson. The latter, on the other hand, comes
from the reactions where the meson is produced by one on-
shell and one off-shell photon. It is well known that these
form factors must be treated with non-perturbative cal-
culations. There are many different approaches to achieve
this purpose, such as lattice calculations [1], vector meson
dominance (VMD) [2,3], perturbative QCD (pQCD) with
some non- perturbative inputs [4–7], QCD sum rules [8–
10], nonlocal quark-pion dynamics [11], and the light-front
quark model (LFQM) [12–20].

LFQM is the only relativistic quark model in which a
consistent and fully relativistic treatment of quark spins
and the center-of-mass motion can be carried out. Thus it
has been applied in the past to calculate various form fac-
tors [12–20]. This model has many advantages. For exam-
ple, the light-front wavefunction is manifestly boost invari-
ant as it is expressed in terms of the momentum fraction
variables (in the “+” component) in analogy to the parton
distributions in the infinite momentum frame. Moreover,
hadron spin can also be relativistically constructed by us-
ing the so-called Melosh rotation. The kinematic subgroup
of the light-front formalism has the maximum number of
interaction-free generators including the boost operator
which describes the center-of-mass motion of the bound
state (for a review of the light-front dynamics and light-
front QCD, see [23]). For charge and transition form fac-
tors, we concentrate on the space-like region q2 ≤ 0 (q be-
ing the momentum transfer). In this region, the so-called
Z graph vanishes because we choose q+ = 0 [20–22], and
only the valence quark contributes. We have a consistent
treatment of the decay constants and of the charge and
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transition form factors in LFQM. On the other hand, there
are some experimental data which concern the charge [24–
27] and transition [28] form factors for some light mesons.
They will offer some tests of this approach.

This paper is organized as follows. In Sect. 2, the ba-
sic theoretical formalism is given and the decay constant
and the charge and transition form factors are derived for
pseudoscalar mesons. In Sect. 3, some asymptotic behav-
iors and the numerical results for some light mesons are
presented and discussed. Finally, the conclusion is given
in Sect. 4.

2 Framework

We will describe in this section the light-front approach
for the calculation of the charge and transition form fac-
tors for off-shell photons and light mesons. The hadronic
matrix elements are evaluated at space-like momentum
transfer, namely the region q2 ≤ 0.

A meson bound state consisting of a quark q1 and an
antiquark q̄2 with total momentum P and spin S can be
written as

|M(P, S, Sz)〉
=
∫

{d3p1}{d3p2}2(2π)3δ3(P̃ − p̃1 − p̃2)

×
∑

λ1,λ2

ΨSSz (p̃1, p̃2, λ1, λ2)|q1(p1, λ1)q̄2(p2, λ2)〉, (1)

where p1 and p2 are the on-mass-shell light-front momenta,

p̃ = (p+, p⊥), p⊥ = (p1, p2), p− =
m2 + p2

⊥
p+ , (2)

and

{d3p} ≡ dp+d2p⊥
2(2π)3

,

|q(p1, λ1)q̄(p2, λ2)〉 = b†
λ1
(p1)d

†
λ2
(p2)|0〉, (3)
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{bλ′(p′), b†
λ(p)} = {dλ′(p′), d†

λ(p)}
= 2(2π)3δ3(p̃′ − p̃)δλ′λ.

In terms of the light-front relative momentum variables
(x, k⊥) defined by

p+
1 = (1− x)P+, p+

2 = xP+,

p1⊥ = (1− x)P⊥ + k⊥, p2⊥ = xP⊥ − k⊥, (4)

the momentum-space wavefunction ΨSSz can be expressed
as

ΨSSz (p̃1, p̃2, λ1, λ2) = RSSz

λ1λ2
(x, k⊥)φ(x, k⊥), (5)

where φ(x, k⊥) describes the momentum distribution of
the constituents in the bound state, and RSSz

λ1λ2
constructs

a state of definite spin (S, Sz) out of light-front helicity
(λ1, λ2) eigenstates. Explicitly,

RSSz

λ1λ2
(x, k⊥) =

∑
s1,s2

〈λ1|R†
M (1− x, k⊥,m1)|s1〉

× 〈λ2|R†
M (x,−k⊥,m2)|s2〉

×
〈
1
2
s1;

1
2
s2|S, Sz

〉
, (6)

where |si〉 are the usual Pauli spinors, and RM is the
Melosh transformation operator:

RM (x, k⊥,mi) =
mi + xM0 + iσ · k⊥ × n√

(mi + xM0)2 + k2
⊥

, (7)

with n = (0, 0, 1), a unit vector in the z-direction, and

M2
0 =

m2
1 + k2

⊥
(1− x)

+
m2

2 + k2
⊥

x
. (8)

In practice it is more convenient to use the covariant form
for RSSz

λ1λ2
[14]:

RSSz

λ1λ2
(x, k⊥) =

√
p+
1 p

+
2√

2M̃0
ū(p1, λ1)Γv(p2, λ2), (9)

where

M̃0 ≡
√
M2

0 − (m1 − m2)2,

Γ = γ5 (pseudoscalar, S = 0). (10)

We normalize the meson state as

〈M(P ′, S′, S′
z)|M(P, S, Sz)〉

= 2(2π)3P+δ3(P̃ ′ − P̃ )δS′SδS′
zSz , (11)

so that ∫
dxd2k⊥
2(2π)3

|φ(x, k⊥)|2 = 1. (12)

In principle, the momentum distribution amplitude
φ(x, k⊥) can be obtained by solving the light-front QCD
bound state equation [23,29]. However, before such first-
principles solutions are available, we shall have to be con-
tented with phenomenological amplitudes. One example
that has often been used in the literature for heavy mesons
is the Gaussian-type wavefunction,

φ(x, k⊥)G = N
√
dkz

dx
exp

(
− k2

2ω2

)
, (13)

where N = 4(π/ω2)3/4 and kz is the internal momentum
k = (k⊥, kz), defined through

1− x =
e1 − kz

e1 + e2
, x =

e2 + kz

e1 + e2
, (14)

with ei = (m2
i + k2)1/2. We then have

M0 = e1 + e2, kz =
xM0

2
− m2

2 + k2
⊥

2xM0
, (15)

and
dkz

dx
=

e1e2
x(1− x)M0

, (16)

which is the Jacobian of the transformation from (x, k⊥)
to k. This wavefunction has been also used in many other
studies of hadronic transitions. Besides this wavefunction
which has the exponential form, we also consider one of
power-law type:

φ(x, k⊥)N = N
(

ω2

M2
0 + ω2

)n

. (17)

where n is another parameter. In this paper, we only con-
sider the light mesons: the u and d quark masses are the
same (mu = md = mq), thus (8) will be reduced to

M2
0 =

m2
q + k2

⊥
x(1− x)

. (18)

Thus, the k⊥-dependence of the wavefunction φ(x, k⊥)N
occurs exclusively in the combination k2

⊥/x(1−x), which is
consistent with the conditions in [30,31]. We will calculate
the results by using these two wavefunctions and compare
them with the data.

2.1 Decay constants

The decay constants of pseudoscalar mesons P (q1q̄2)
which include octet and singlet are defined by

〈0|Aa
µ|P (p)〉 =

√
2ifa

P pµ

(a = 1, ..., 8, 0; P = π,K, η, η′), (19)

where Aa
µ is the axial vector current. It can be evaluated

using the light-front wavefunction given by (2.1) and (2.5)

〈0|q̄2γ+γ5q1|P 〉 =
∫

{d3p1}{d3p2}2(2π)3

× δ3(p̃ − p̃1 − p̃2)φP (x, k⊥)R00
λ1λ2

(x, k⊥)

× 〈0|q̄2γ+γ5q1|q1q̄2〉. (20)

Since M̃0(x(1−x))1/2 = (A2+k2
⊥)

1/2, it is straightforward
to show that

fa
P = 2

√
3
∫

dxd2k⊥
2(2π)3

φP (x, k⊥)
A√A2 + k2

⊥
, (21)
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 Fig. 1a–d. Diagrams for a one pseudoscalar meson decay to
vacuum, b the scattering of one virtual photon and one meson,
c a meson produced by one on-shell and one off-shell photons,
and d a meson produced by two off-shell photons

where

A = m1x+m2(1− x). (22)

Note that the factor 31/2 in (21) arises from the color
factor implicit in the meson wavefunction. We illustrate
this process in Fig. 1a. Once the decay constant is known,
it can be used to constrain the parameters appearing in
the light-front wavefunction.

2.2 Charge form factors

The charge form factor of a pseudoscalar meson P is de-
termined by the scattering of one virtual photon and one
meson. This process is illustrated in Fig. 1b. This form
factor can be defined by the matrix element

〈P (p′)|Jµ|P (p)〉 = FP (Q2)(p+ p′)µ, (23)

where Jµ is the vector current and Q2 ≡ −q2 = −(p−p′)2.
As discussed in the above subsection, we readily obtain

〈P (p′)|q̄γµq|P (p)〉 =∑
λ1,λ′

1,λ2,λ′
2

∫
{d3p1}{d3p2}2(2π)3δ3(p̃ − p̃1 − p̃2)

×φ∗
P (x, k

′
⊥)φP (x, k⊥)R

00†
λ′

1λ′
2
R00

λ1λ2
, (24)

where k′
⊥ ≡ k⊥ + xq⊥. Comparing (23) with (24), we ob-

tain

FP (Q2) =
∫

dxd2k⊥
2(2π)3

φ∗
P (x, k

′
⊥)φP (x, k⊥)

× M̃0

M̃ ′
0

(
1 +

xq⊥ · k⊥
A2 + k2

⊥

)
, (25)

where M̃ ′
0 ≡ (M

′2
0 − (m1 − m2)2)1/2 and

M
′2
0 =

m2
1 + k

′2
⊥

(1− x)
+

m2
2 + k

′2
⊥

x
. (26)

This result is the same as (17) in [12]. Thus, the charge
form factor FP (Q2) will become available once the param-
eters in the wavefunction are determined.

2.3 Transition form factors

There are two types of transition form factors: Fπγ and
Fπγ∗. The form factor FPγ , in which the meson is pro-
duced by one on-shell and one off-shell photon (γγ∗ → P ),
is defined by the Pγγ∗ vertex [4]

Γµ = −ie2FPγ(Q2)εµνρσp
νqρεσ, (27)

where q is the momentum of the off-shell photon, q2 =
−q2

⊥ = −Q2, and ε is the polarization vector of the on-
shell photon. We illustrate this process in Fig. 1c and write
down the amplitude within the light-front framework [4]

Γµ =
∑

λ1,λ2,λ

eqeq̄′e2
∫

{d3p1}{d3p2}

× 2(2π)3δ3(p̃ − p̃1 − p̃2)φP (x, k⊥)

×
[(

q2
⊥
p+ − m2

1 + (k⊥ + q⊥)2

p+
1

− m2
2 + k2

⊥
p+
2

)−1

× v̄(p2, λ2) �εu(p′
1, λ)ū(p

′
1, λ)γµu(p1, λ1)

+ (1 ↔ 2)]R00
λ1λ2

, (28)

where eq and eq̄′ are the electric charges of the quark q
and q̄′, respectively. It is straightforward to show that

FPγ(Q2)

= −4
√
3√
2
eqeq̄′

∫
dxd2k⊥
2(2π)3

φP (x, k⊥)
A√A2 + k2

⊥

×

 1

(1− x)
(
q2
⊥ − m2

1 + (k⊥ + q⊥)2

1− x
− m2

2 + k2
⊥

x

)

+
1

x

(
q2
⊥ − m2

1 + k2
⊥

1− x
− m2

2 + (k⊥ − q⊥)2

x

)
 . (29)

This result is consistent with (4.4) of [32]. The form factor
FPγ∗ arising from the Pγ∗γ∗ vertex, where γ∗γ∗ repre-
sents two off-shell photons, is defined by [33]

Γµν = −ie2FPγ∗(Q2, Q′2)εµνρσQρPσ, (30)

where Q ≡ (1/2)(q′−q), P ≡ q′+q, and Q′2 = −q′2 = q′2
⊥ .

This process is depicted in Fig. 1d. We expect that this
amplitude is similar to the one off-shell photon case and
that it has the form

Γµν =
∑

λ1,λ2,λ

eqeq̄′e2
∫

{d3p1}{d3p2}

× 2(2π)3δ3(p̃ − p̃1 − p̃2)φP (x, k⊥)

×
[(

q2
⊥ − q′2

⊥
p+ − m2

1 + (k⊥ + q⊥)2

p+
1

− m2
2 + k2

⊥
p+
2

)−1

× v̄(p2, λ2)γνu(p′
1, λ)ū(p

′
1, λ)γµu(p1, λ1)

+ (1 ↔ 2)]R00
λ1λ2

. (31)
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From (30) and (31), we arrive at

FPγ∗(Q2, Q′2)

= −4
√
3√
2
eqeq̄′

∫
dxd2k⊥
2(2π)3

φP (x, k⊥)
A√A2 + k2

⊥

×

 1

(1− x)
(
q2
⊥ − q′2

⊥ − m2
1 + (k⊥ + q⊥)2

1− x
− m2

2 + k2
⊥

x

)

+
1

x

(
q2
⊥ − q′2

⊥ − m2
1 + k2

⊥
1− x

− m2
2 + (k⊥ − q⊥)2

x

)
 . (32)

3 Numerical results and discussions

We now compare our results for the form factors with
the experimental data. Before doing this, we need to de-
termine the parameters m1, m2, and ω appearing in the
wavefunction φP (x, k⊥). Of course, we assume that this
wavefunction is process-independent.

In the π–γ case, the constituent masses of the u and d
quarks are the same, i.e., mu = md ≡ mq. We can use the
experimental value for the decay constant, fπ = 92.4MeV
[35] to determine the parametersmq and ωπ via (21). How-
ever, there is more than one parameter to be determined
from one experimental value. Therefore, in principle we
have infinite combinations satisfying the decay constant
value. If we can find other constraints, these parameters
will be determined uniquely. The charge form factor of the
pion has the following low-energy expansion:

Fπ(Q2) = 1 +
1
6
〈r2〉πQ

2 +O(Q4), (33)

where 〈r2〉π is the electromagnetic radius of the charged
pion. Thus,

〈r2〉π � −6∂Fπ(Q2)
∂Q2

∣∣∣∣∣
Q2=0

. (34)

Experimentally one finds [34]

〈r2〉exp
π = (0.439± 0.03) fm2. (35)

This offers the second constraint. The third one is from
the transition form factor Fπγ(Q2) (29); if we consider the
limit Q2 → 0, there is the simple form

Fπγ(0) = 4
√
3√
2
(e2u − e2d)√

2

∫
dxd2k⊥
2(2π)3

φπ(x, k⊥)
A√A2 + k2

⊥

×
[

1
x(1− x)M2

0

]
. (36)

It is well known that Fπγ(0) is related to the decay width
Γ (π → γγ) by [28]
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Fig. 2. The charge form factor of the pion in small momentum
transfer. Data are taken from [24]

|Fπγ(0)|2 = 1
(4πα)2

64πΓ (π → γγ)
M3

π

, (37)

where α is the QED coupling constant andMπ is the mass
of the pion. From the experimental data for Γ (π → γγ)
[35], one can obtain the value of Fπγ(0): 0.27±0.01GeV−1.
Besides (37), Fπγ(0) also can be determined from the axial
anomaly in the chiral limit of QCD [36]:

Fπγ(Q2)|Q2→0 =
3
√
2Cπ

4π2fπ
. (38)

where Cπ = 1/(3(21/2)).
Thus, we can uniquely determine all the parameters in

the wavefunction by using (21), (34), and (36). Here we
list the fitted parameters of these two wavefunctions φG

and φN in Table 1.
From Table 1, we find that the value Fπγ(0) = 0.27

GeV−1 cannot be reached by adjusting the parametersmq

and ωπ in the wavefunctions φG. The reason may be that
the transverse momentum suppression of the exponential
forms in φG are stronger than φN . Thus we only use the
type of wavefunction φ(x, k⊥)N to calculate the form fac-
tors Fπ(Q2) and Fπγ(Q2) in the −8GeV2 ≤ q2 ≤ 0 region
by using (25) and (29). On the one hand, the value of the
parameter mq = 0.192GeV is consistent with the order of
the constituent quark mass, 0.2 ∼ 0.3GeV; on the other
hand, the fitted size of the charge pion, 〈r2〉π = 0.434 fm2,
almost equals the experimental value. Now, we have no
degree of freedom to adjust this wavefunction because all
the parameters have been fixed. From Figs. 2, 3, and 4, we
find that these predictions are all in agreement with the
experimental data [24,25,28].

There exist various models or methods that can be
used to calculate these form factors. For Fπ(Q2), [17] has
used the Gaussian-type and power-law-type (n = 2) wave-
function for small q2 region, [18] has used the Gaussian-
type one for large q2 region; their results are fit the data
well. The pion Bethe–Salpeter amplitude is completely an-
alyzed in [37] and some nice results at small and large mo-
mentum transfers are obtained. The authors of [38] use the
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Table 1. Parameters mq and ωπ in the φG and φN wavefunctions

wavefunction mq (GeV) ωπ (GeV) fπ (MeV) 〈r2〉π(fm2) Fπγ(0)(GeV−1)

φG 0.243 0.328 92.4 0.434 0.231
φN (n = 1.7) 0.192 0.957 92.4 0.434 0.272

0 1 2 3 4 5 6 7 8
Q

2
 (GeV

2
)

0

0.1

0.2

0.3

0.4

0.5

0.6

Q
2  F

π

 
Fig. 3. The charge form factor of the pion in large momentum
transfer. Data are taken from [25] (empty circles), [26] (filled
triangles), and [27] (filled square)
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Fig. 4. The one off-shell photon transition form factor of
the pion. The dotted line is the limiting behavior for 2fπ

(0.185GeV) which is predicted by pQCD. Data are taken from
[28]

pQCD approach to obtain the results in the Q2 ≥ 4GeV2

region.
For Fπγ(Q2), [18] has used the Gaussian-type wave-

function and the axial anomaly plus PCAC relations to
calculate the decay width Γ (π → γγ). The q2 dependence
is derived in [32] and the numerical results are in agree-
ment with the data. The method of pQCD also fits [39,
40] the data well in the −8GeV2 ≤ q2 ≤ −0.5GeV2 re-
gion. It is worth remarking here that pQCD predicts that
the asymptotic behavior of Fπγ(Q2) is proportional to the
integration of [x(1− x)Q2]−1 [4], that is,

Q2Fπγ(Q2)|Q2→∞ → constant; (39)

it also has this property in (29).
For Fπγ∗(Q2, Q′2), since there are no experimental

data yet, we must proceed carefully. On the one hand,
if the limit Q′2 → 0 is taken, this form factor must be
reduced to Fπγ(Q2). Indeed, this condition is satisfied in
(32). On the other hand, if we take the limits Q2, Q′2 → ∞
and assume that the wavefunction φπ(x, k⊥) is symmetric
in x and 1− x, the asymptotic behavior of the transition
form factor (32) becomes

Fπγ∗(Q2, Q′2)|Q2,Q′2→∞ =
4√
3

∫
dxd2k⊥
2(2π)3

φπ(x, k⊥)

× A√A2 + k2
⊥

[
1

xQ2 + (1− x)Q′2

]
, (40)

which is also consistent with the assumption made in
pQCD [6]. Thus we have confidence in the prediction of
the values of Fπγ∗(Q2, Q′2) in terms of (32).

We also consider the η–η′ system. Due to the mixing
in this system, η and η′ both have η8 and η0 components.
Recent investigations [41,42] have shown that this system
can adequately be described with two mixing angles, θ8
and θ0. As has become clearer very recently [43,44], a lin-
ear combination of orthogonal states ηq and ηs was made
for the description of η and η′:(

η

η′

)
=U(α)

(
ηq

ηs

)
, U(α)=

(
cosα − sinα
sinα cosα

)
, (41)

where ηq and ηs are composed of the valence quarks qq̄ =
(uū + dd̄)/21/2 and ss̄, respectively. The decay constants
of η and η′ are defined by

〈0|Aj
µ|P 〉 =

√
2if j

P pµ (j = q, s; P = η, η′), (42)

where Aq
µ = (ūγµγ5u + d̄γµγ5d)/21/2 and As

µ = s̄γµγ5s
both differ from (19) slightly. Thus,(

fq
η fs

η

fq
η′ fs

η′

)
= U(α)

(
fq 0
0 fs

)
. (43)

Within this qq̄–ss̄ mixing scheme, the transition form fac-
tors Fηγ(Q2) and Fη′γ(Q2) in the limit Q2 → 0 are anal-
ogous to (38) [44]

Fηγ(Q2)|Q2→0 =
3
√
2Cq

4π2fq
cosα − 3

√
2Cs

4π2fs
sinα,

Fη′γ(Q2)|Q2→0 =
3
√
2Cq

4π2fq
sinα+

3
√
2Cs

4π2fs
cosα, (44)
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Fig. 5. The one off-shell photon transition form factor of η.
The dotted line is the limiting behavior (0.182GeV) which is
predicted by pQCD. Data are taken from [28]

where Cq = 5/(9(21/2)) and Cs = 1/9. For the wavefunc-
tions φηq (x, k⊥) and φηs(x, k⊥), there are four parameters
mq, ωηq , ms, and ωηs . The value of mq is fixed in the pion
case, thus we need three constraints to determine the other
three parameters uniquely. The authors of [43], after con-
sidering the data of the decay widths Γ (η(′) → γγ) and
some other processes, obtain

fq = (1.07± 0.02)fπ,

fs = (1.34± 0.06)fπ,

α = 39.3◦ ± 1.0◦. (45)

Using (45), we determine the values of the three parame-
ters

ωηq = 1.215GeV,
ms = 0.262GeV,
ωηs

= 1.229GeV, (46)

and calculate the transition form factors Fηγ(Q2) and
Fη′γ(Q2). The value of the parameterms is a little smaller
than the order of 0.4GeV. The results are plotted in Figs. 5
and 6 and are both in agreement with the data. The
Gaussian-type wavefunction has been used in [18]; there
the decay widths Γ (η(′) → γγ) were obtained using the
axial anomaly plus PCAC relations, and an q2 dependence
[32] results with mixing angle θSU(3) = −19◦.

Comparing with the predictions of pQCD [42–45], they
fit the data well in the −16GeV2 ≤ q2 ≤ −1GeV2 region
for Fηγ(Q2) and Fη′γ(Q2). A nontrivial quark–antiquark
structure of the photon is suggested and combined with
the pQCD method to evaluate the transition form factors
of π, η, and η′ [46]; the results are in agreement with the
data in the −16GeV2 ≤ q2 ≤ 0 region.

4 Conclusion

The charge and transition form factors of the light mesons
are studied in the present paper. In the relativistic light-
front quark model, these form factors have been evaluated
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Fig. 6. The one off-shell photon transition form factor of η′.
The dotted line is the limiting behavior (0.300GeV) which is
predicted by pQCD. Data are taken from [28]

in the frame where q+ = 0 and q2 ≤ 0 and there is no need
to calculate the contribution from the so-called Z graph
[20].

We have used the experimental vaules of the decay
constant fπ, the electromagnetic radius 〈r2〉π, and the de-
cay width Γ (π → γγ) as the constraints to fix the pa-
rameters appearing in the pion wavefunction. When the
parameters are fixed, we evaluate the charge as well as one
and two virtual photon transition form factors. Compar-
ing the results of the calculation with the experimental
data, we find that the fitted parameters are applicable
in the −8GeV2 ≤ q2 ≤ 0 region for both charge and
transition form factors. Thus, the assumption is satisfied:
the wavefunction is process independent. For the η–η′ sys-
tem, a similar method for fixing the parameters is used.
We also find that the results Fηγ(Q2) and Fη′γ(Q2) are in
agreement with the experimental data. From these results,
it is seems that LFQM is valid up to the scale of order
Q2 ∼ 16GeV2; however, the constituent quark models are
only applicable in the low-energy region. When Q2 → ∞,
the method of pQCD will be suitable and the light quark
masses are almost equal to zero. Thus, evolution of param-
eter values and distribution functions between the low Q2

and large Q2 regions [47] can be expected and seems to
be interesting.

In principle, the wavefunction must be solved by the
bound state equations. Before getting it from first princi-
ple, the phenomenlogical wavefunctions are needed. How-
ever, finding the wavefunction which can fit all the experi-
mental data is not easy. This work reveals that the power-
law wavefunction and the new treatment of the η–η′ mix-
ing system are suitable for use in the two photons decay
and the transition form factors of the light mesons. The
major difference between the power-law- and Gaussian-
type wavefunctions are the behaviors of the transverse
momentum suppression. Thus, further, we can use these
wavefunctions for the other processes to realize the adapt-
ability of the light-front dynamics.
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